F324: Rings, Polymers \& Analysis 4.3.1 - Chromatography MARK SCHEME

1. (i) adsorption \checkmark

ALLOW partition OR adsorbtion
IGNORE solubility OR desorption
DO NOT ALLOW absorption
(ii) measure how far each spot travels relative to the solvent front or calculate the R_{f} value
compare R_{f} values to those for known amino acids
ALLOW compare $R_{f} v$ values to database
ALLOW compare to known amino acids
DO NOT ALLOW retention times for first mark, but the 2nd mark would be available as \checkmark ECF
ALLOW alternative approach: on the same plate compare position of spots \checkmark with known amino acids
(iii) (amino acids won't separate because) similar compounds have similar R_{f} (values)

ALLOW spots often overlap OR don't (fully) separate
ALLOW they have similar R_{f} (values) or similar adsoptions or similar retention times ECF to (ii)
2. (i) one amide link shown correctly (1)
glycine and phenylalanine parts shown correctly (1) proline linked correctly (1)
(ii) $6(1) \quad 1$
(iii) gas/liquid chromatograph separates the tripeptides (1) mass spectrometer produces a distinctive fragmentation pattern (1) identification by computer using a spectral database (1) 3
3. (a) R_{f} value is distance moved by a component/spot/solute divided by distance moved by solvent. (1)

Retention time is the time between injection and emergence (or detection) of a component. (1)
(b) (i) Partition / adsorption (1) 1
(ii) Role of gas: carrier gas / mobile phase / to carry to sample through the chromatography column (1)
Role of liquid: stationary phase (1) 2
(iii) Trace with two peaks drawn (1) 1
(iv) Measure area under each peak (1)
Find total area (1)
$\%=($ area of one peak/total area $) \times 100 \%(\mathbf{1})$ 3
4. (i) Accept paper, column or thin-layer chromatography
(ii) The R_{f} value 1
(iii)

$$
1
$$

5. (a) (i) Retention time 1
(ii)

(b) Partition 1
